Nutanix OS 3.5: Deduplication, New GUI, SRM, Hyper-V Support

Nutanix LogoNutanix, one of the fastest growing IT infrastructure startups around, shows no signs of slowing down with their release of Nutanix OS 3.5. For those not familiar with Nutanix, they offer a truly converged virtualized infrastructure. This generally consists of four nodes in two rack units of space, where each node has CPU, RAM, traditional fixed disk, SSD, and Fusion-IO flash built in. Their secret sauce is really NDFS, the Nutanix Distributed File System, built by the same folks that created Google’s File System, as well as a unified, hypervisor-agnostic management interface.

Nutanix OS 3.5 adds what they call the “Elastic Deduplication Engine,” an inline deduplication facility for RAM and flash that aims to be able to cram more data into those expensive, fast storage areas. They claim that they’ve been able to store up to 10x the amount of data in RAM and flash as a result, which has a very positive effect on storage performance, most notably latency. It also helps to drive up the VM density, especially in environments where there is a lot of common data, such as VDI deployments.

While they say their deduplication approach is extensible to all storage on their platforms, actual implementation on other types of storage is left to a future version. This feature set, while a welcome addition, does trail some of their competition. For example, Simplivity’s OmniCube Accelerator deduplicates once, then stores that deduplicated data on any tier of storage.

Version 3.5 of their OS also brings with it much-desired GUI changes, implemented in HTML5 for cross-platform browser compatibility and aimed at making IT staff lives easier by simplifying the environment. They call it a “consumer-grade user experience”, which is something more IT vendors should strive for. GUIs are oft-overlooked, an afterthought implemented by an engineer who will never use the product on a day-to-day basis like the customers will. By focusing on decent UX design many human errors can be reduced, root causes of problems can be found more readily, and IT staff can go to work not dreading the tools at their disposal.

Nutanix OS natively offers replication services between Nutanix clusters as part of NDFS, and this release adds compression to that, as well as the ability to be controlled by VMware’s Site Recovery Manager (SRM). In order to initiate failovers, SRM uses “Storage Replication Adapters” (a fancy name for what are often just Perl scripts) to bridge the gap between SRM and the storage array APIs. This is an attractive feature for larger enterprises which have built their DR/BC/COOP runbooks around SRM already.

Nutanix says there are over 75 enhancements in OS 3.5, which will be available to all customers with active maintenance contracts beginning in September. The last new feature I find notable is their beta support for Microsoft Hyper-V Server 2012, as well as making KVM support a first-class citizen on their platforms. This is great news for non-VMware shops and shops exploring additional hypervisors and cloud platforms like OpenStack.

Overall, this release is a great one, and it shows Nutanix has their eye on the problems that actually plague IT, coming up with clever and cost-efficient solutions to them in software while also delivering a range of hardware to meet enterprise and small-scale IT needs. They’ve become one of the poster children for converged and software-defined IT. I am anxious to see what they might do with other areas of IT in the future, like networking, as “software-defined” makes its way deeper into our data centers.

Nutanix OS 3.5 - Interface     Nutanix OS 3.5 - Disk Interface

Leave a Reply

4 Comments on "Nutanix OS 3.5: Deduplication, New GUI, SRM, Hyper-V Support"

newest oldest most voted
In my opinion, Nutanix and Simplivity are the leading hyperconverged infrastructure products. I was much more interested in Nutanix at the start of evaluation; however, discovered a very efficient and extensible architecture in the Omnicube. The Omnicube performs deduplication and compression at data inception before writing to (any tiered) storage. Importantly, this preserves CPU cycles for actual workloads versus the incurred overhead of “post processing” data optimization. The Nutanix storage elements have been redesigned three times, from FusionIO then two additional iterations of Intel flash. I understand that this is Nutanix evolving, but critical ‘hot’ storage integration should have been… Read more »
Who do you work for, your post sounds like a scripted Simplivity FUD sheet for Nutanix? Disclaimer: I work for Nutanix Some additional thoughts. Nutanix delivers all intelligence and data management at the software layer, without relying on any hardware crutches. Our first generation system used Fusion-io, back when there weren’t many options for server-attached flash. Intel jumped into the game with PCIe-SSD and more recently a blazing fast SSD and because our intelligence is defined in software we were quickly able to utilize this new hardware in our new generation of systems (1000, 3000, and 6000). Your statement on… Read more »
Agreed, I believe both of these companies are moving the hyperconverged infrastructure space forward and I’m looking forward to seeing where each of these go. However, I’m not sure if I completely agree with all of your statements below.. Compression at inception definitely makes sense… for non-random workloads (aka sequential). How is it possible to truly compress data at inception efficiently for randomized workloads in my opinion its not truly possible to do this efficiently. This would absolutely kill random IO performance and increase random write latency. But for sequential, absolutely. Nutanix will detect the IO pattern (aka random v.… Read more »
Dan, I work for a midsize manufacturing company. Both the Nutanix and Omnicube appliances have hardware “crutches” (as you say) as well as proprietary software dependencies. This is a part of the risk/reward equation for converged infrastructure appliances. Emphasizing “blazing fast SSD” (versus what previous iteration?) is compensation for sub-optimal ‘front-side’ data optimization. What’s better than efficiently processing data from write initiation throughout all storage tiers and preserving CPU for actual workloads? The super car analogy is like raw horsepower (Lamborghini) versus efficient dynamics (GT-R). You didn’t state anything new about HA. vSphere HA functionality isn’t the focus; it’s about… Read more »